On the Empirical State-Action Frequencies in Markov Decision Processes Under General Policies

نویسندگان

  • Shie Mannor
  • John N. Tsitsiklis
چکیده

We consider the empirical state-action frequencies and the empirical reward in weakly communicating finite-state Markov decision processes under general policies. We define a certain polytope and establish that every element of this polytope is the limit of the empirical frequency vector, under some policy, in a strong sense. Furthermore, we show that the probability of exceeding a given distance between the empirical frequency vector and the polytope decays exponentially with time under every policy. We provide similar results for vector-valued empirical rewards.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Deviations Bounds for Markov Decision Processes Under General Policies

We consider the empirical state-action frequencies and the empirical reward in weakly communicating finite-state Markov decision processes under general policies. We define a certain polytope and establish that every element of this polytope is the limit of the empirical frequency vector, under some policy, in a strong sense. Furthermore, we show that the probability of exceeding a given distan...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Denumerable Constrained Markov Decision Processes and Finite Approximations

The purpose of this paper is two fold. First to establish the Theory of discounted constrained Markov Decision Processes with a countable state and action spaces with general multi-chain structure. Second, to introduce nite approximation methods. We deene the occupation measures and obtain properties of the set of all achievable occupation measures under the diierent admissible policies. We est...

متن کامل

Quantized Stationary Control Policies in Markov Decision Processes

For a large class of Markov Decision Processes, stationary (possibly randomized) policies are globally optimal. However, in Borel state and action spaces, the computation and implementation of even such stationary policies are known to be prohibitive. In addition, networked control applications require remote controllers to transmit action commands to an actuator with low information rate. Thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2005